
EECS 270, Lecture Notes 8: Bus-based Datapath Page 1 of 6

Today:
• Bus-based Datapath

o Find Max

• Generic computer

Background
We’ve done some basic datapath and control work. We started with a simple device to fire a laser, in

homework you’ve worked on a device that reads 16 values from memory and averages them, and in

both lecture and homework you’ve worked on a 4-bit multiplier.

In each case we had a datapath (usually given) and a control

part. Lab 6 could even be viewed in a similar way—the counter

is the (fairly simple) datapath.

Today we’ll look at bus-based datapath schemes including a

simple computer. This gets much closer to “RTL” (Register

transfer logic) in that you can think of each state as defining

how data moves between registers (and memories). We’re just

going to look at systems with a single bus—they can be a bit

easier to think about. Notice that the datapaths we’ve already

looked at have more than one bus—they directly connect things. This is quite reasonable—maybe

better in practice. But we’re going to be doing some fairly complex things, so we’re going to go with a

datapath that is a bit easier to work with.

EECS 270, Lecture Notes 8: Bus-based Datapath Page 2 of 6

The above is a proposed datapath which is to search the first 16 elements of memory and put the largest

value into the 17th element of memory (address 16—it’s zero indexed). All of the shaded boxes are

registers. Memory is, of course, an array of registers. There is one bus (it wraps around) and each cycle

only one device can be “driving the bus” but multiple devices could, in theory, read from it. (That should

make sense, yes?). The we_ are all “write enables”. The “drive_” are all tri-state device controllers.

Let’s try to build a controller that does what we need to get the max of the first 16 memory locations

into location 16 of the memory. You have more room on the next page…

EECS 270, Lecture Notes 8: Bus-based Datapath Page 3 of 6

EECS 270, Lecture Notes 8: Bus-based Datapath Page 4 of 6

Start on a computer
Instruction set:

Instruction name Opcode Effect

halt 0
PC = PC+4

stop executing instructions

add 1
PC = PC+4

memory[addr0] = memory[addr1] + memory[addr2]

sub 2
PC = PC+4

memory[addr0] = memory[addr1] - memory[addr2]

mult 3
PC = PC+4

memory[addr0] = memory[addr1] * memory[addr2]

div 4
PC = PC+4

memory[addr0] = memory[addr1] / memory[addr2]

cp 5
PC = PC+4

memory[addr0] = memory[addr1]

and 6
PC = PC+4

memory[addr0] = memory[addr1] & memory[addr2]

or 7
PC = PC+4

memory[addr0] = memory[addr1] | memory[addr2]

not 8
PC = PC+4

memory[addr0] = ~memory[addr1]

be 9

if (memory[addr1] == memory[addr2]) {

 PC = addr0

} else {

 PC = PC+4

}

bne 10

if (memory[addr1] != memory[addr2]) {

 PC = addr0

} else {

 PC = PC+4

}

blt 11

if (memory[addr1] < memory[addr2]) {

 PC = addr0

} else {

 PC = PC+4

}

Comparisons take into account the sign of the

number. E.g., 16'hffff (-1) is less than 16'h0000 (0).

EECS 270, Lecture Notes 8: Bus-based Datapath Page 5 of 6

Instructions are spread out over 4 addresses. Opcode, addr0, addr1, addr2.

For example, if memory holds the data on the right, then what is the

instruction supposed to do?

Write a short program that performs A=B+C+D where A is location 50, B is location 51, C is location 52

and D is location 53.

Let’s look at a datapath that can do these instructions. We’ll only look at add in class, but it gives the

idea.

Location Data

0 1

1 10

2 20

3 30

4 0

5 0

6 0

7 0

Location Data

0

1

2

3

4

5

6

7

8

9

10

11

12

EECS 270, Lecture Notes 8: Bus-based Datapath Page 6 of 6

Control points:

PC_drive, plus1_drive, ALU_drive, addr0_drive, addr1_drive, addr2_drive, memory_drive.

PC_en, op1_en, op2_en, opcode_en, addr0_en, addr1_en, addr2_en, Maddr_en, memwrite_en

Draw a state machine for add. What part would be in common with the other instructions?

Maddr

